

E-Fuels Levelized Cost Models & Analysis

> Cornelius Matthes 24th May 2024

Outline

- Introduction
- Model Versions
- Model Features
- E-Fuels Cost Models Key Assumptions
- Green E-Ammonia Model
- Green E-Methanol Model
- Green E-Kerosene Model
- Takeaways
- Contact

Introduction

- Hydrogen is a versatile energy carrier with a wide range of uses and unique attributes, especially for energy sectors that are hard to electrify with renewable resources but can be made greener through sector coupling.
- If Green Hydrogen is technically a key enabler of decarbonization, then the next step or barrier to break is economics.
- This translates to: how much does Green Hydrogen and Derivative E-Fuels costs to produce and how to calculate that as well as analyze pathways of cost reduction?
- A financial model toolkit for analyzing levelized cost of Green Hydrogen & derivatives becomes necessary.

🔊 Dii

Model Versions

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

<u>Six Versions:</u>

- LCOH Financial Model Toolkit V5A Green H₂ Production
- LCOH Financial Model Toolkit V5.2
 Global Green H₂ Cost Optimization VOT-BFT Model[™]
- LCOH Financial Model Toolkit V6A
 Green H₂ Production & Delivery Infra Fanday
- LCOA Financial Model Toolkit V7B Green NH₃ Production & Storage
- LCOM Financial Model Toolkit V8A
 Green e-Methanol Production & Storage

• <u>ICOK Financial Model Toolkit V9A</u> Dii Toolkit for RE Grid Integration, Project Development & Industry Localization Green e-Kerosene Production & Storage

Model Features

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

General Features:

- Get exclusive market analysis & benchmarking data for Levelized Cost of Green Hydrogen / Green Ammonia / Green e-Methanol
 Green e-Kerosene
- Obtain the best of all worlds assembled from over 50 best in class models for LCOH/LCOA/LCOM/LCOK in the market.
- A quick yet very effective holistic approach methodology to determine levelized costs of green molecules.
- Capture all life cycle costs and assess project feasibility.
- A detailed analytical dive into optimizing costs as well as performance parameters.
- Utilize powerful and comprehensive sensitivity analysis scenarios.
- User-friendly design with guideline, rich visuals & charts, printable 17-page report.
- Toolkits are available on a Software as a Service (SaaS) basis.
- Native model toolkits files (xls) are available as commercial product.
- Download sample pdf reports at: download link provided upon request

Model Features

Levelized Cost of Green Hydrogen LCOH & Ammonia LCOA & e-Methanol LCOM & e-Kerosene LCOK

Financial Model Toolkit General Features: Zoom In!

- Very Well-Structured Content & Workflow
- Project Information Data Capturing Full Scope of Work & Limits
- Detailed Input Parameters Form with Guideline Notes
- Analysis of Pre-COD Finance Cost & Construction Delay Cost
- Tabular LCOH/LCOA/LCOM/LCOK Outputs
- Breakdown CAPEX & OPEX & LCOH/LCOA/LCOM/LCOK Output Charts
- Up to 16 Parameters Sensitivity Tornado Chart
- Up to 8 Two-Dimensional Sensitivity Charts
- Multi-Lifecycle Analysis Chart
- Export Data/Charts Feature
- GIS Interface Feature

E-Fuels Cost Models Key Assumptions

- Plant Lifecyle: 20 years
- Plant Economies of Scale: 1 GWe Electrolyzer
- WACC: 6.4%
- Renewables Electricity Cost: USD 2.5 cent/kWh
- Electrolyzer Capacity Factor: 70%
- PtL Synthesis Process
 - E-Ammonia: Haber Bosch
 - E-Methanol: H₂+CO₂ Synthesis
 - E-Kerosene: Fischer Tropsch
- Costs Reference Year: 2030
- ALK Electrolyzer Cost (Stack+BoP): \$560/kWe
 - Plant Total Installed Cost (Electrolysis + Synthesis) Dii Toolkit for RE Grid Integration, Project Development & Industry Localization © Dii
 - E Ammonia: ¢1 61P

Green E-Ammonia LCOA Model

Opex Component - General Fixed O&M ■ Opex Component - NH₃ Synthesis Energy Cost Opex Component - Stack Replacement Cost ■ Opex Component - H₂ Pre-Compression Energy Cost Opex Component - HB-ASU Major Maintenance Cost Opex Component - Leased Land Cost Opex Component - Other infra Energy Cost ■ Opex Component - H₂ Hub Common Infra Cost Opex Component - Decom. & Res. Cost

Top 3 Impactful Drivers Electrolyzer Efficiency 1. 2. Capacity Factor

Energy Cost 3.

Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

43%

Green E-Methanol LCOM Model

Green E-Methanol Model Version 8A Typical LCOM Cost Breakdown

- 1. Energy Cost
- 2. CO₂ Feedstock
- 3. CAPEX

Green E-Methanol Cost Range 700-950 \$/ton

Grey Methanol Cost Range 350-550 \$/ton Methanol Inst. Apr 2024

LCOM Breakdown \$/t MeOH

- Opex Component MMRA Stack Replacement Cost
 Opex Component Water Cost
- Opex Component H2 Pre-Compression Energy Cost
- Opex Component MMRA MeOH Synthesis Cost
- Opex Component Leased Land Cost
- Opex Component Other infra Energy Cost
- Opex Component Decom. & Res. Cost

Top 4 Impactful Drivers

- 1. Electrolyzer Efficiency
- 2. Capacity Factor
- 3. Energy Cost

Tornado Chart - LCOM \$/t MeOH

Total Sp. Energy Consump. (kWhe AC/Kg H2) (-50%, 0%, 50%)

Capacity Factor (%) (50%, 0%, -50%)

Energy Cost (\$/kWhe AC) (-50%, 0%, 50%)

CO₂ Feedstock Net Cost (\$/t CO₂) (-50%, 0%, 50%)

WACC (%)

(-50%, 0%, 50%)

Fixed O&M Cost (% of EPC Cost) (-50%, 0%, 50%)

MeOH Syn. Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

Stack Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

Green E-Kerosene/SAF LCOK Model

Green E-Kerosene/SAF Model Version 9A Typical LCOK Cost Breakdown

Major Cost Contributors

- 1. Energy Cost
- 2. CAPEX
- 3. CO₂ Feedstock

Green E-Kerosene Cost Range 1700-2400 \$/ton

Grey Kerosene Cost Range 760-840 \$/ton IATA. May 2024

- Opex Component General Fixed O&M
- Opex Component RWGS-FT-PWU Synthesis Energy Cost
- Opex Component MMRA Stack Replacement Cost
- Opex Component MMRA RWGS-FT-PWU Synthesis Cost
- Opex Component Water Cost
- Opex Component H2 Pre-Compression Energy Cost
- Opex Component Leased Land Cost
- Opex Component Other infra Energy Cost
- Opex Component Decom. & Res. Cost

Top 4 Impactful Drivers

- 1. Electrolyzer Efficiency
- 2. Capacity Factor
- 3. Energy Cost

Tornado Chart - LCOK \$/t SAF¹

Total Sp. Energy Consump. (kWhe AC/Kg H2) (-50%, 0%, 50%)

Capacity Factor (%) (50%, 0%, -50%)

Energy Cost (\$/kWhe AC) (-50%, 0%, 50%)

CO₂ Feedstock Net Cost (\$/t CO2) (-50%, 0%, 50%) WACC (%)

(-50%, 0%, 50%)

Synthesis Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

Fixed O&M Cost (% of EPC Cost) (-50%, 0%, 50%)

Stack Pack Cost (\$/kWe DC) (-50%, 0%, 50%)

1: Costs are loaded on liquid fuels

Dii Toolkit for RE Grid Integration, Project Development & Industry Localization

Takeaways

- Green E-Fuels are vital for NetZero 2050
- Challenges that are critical for bankable projects development:
 - 1. Create foreseeable demand via a combination of policy and economic tools
 - 2. Establish risk-balanced long-term offtake agreements
 - 3. Bridge the green e-fuel price gap against grey fuel by pricing GHG at true cost of damage potential
 - 4. Institute clear long-term guarantees of origin / standards / policy / regulatory environments
 - 5. Form harmonized overall plant performance guarantees
 - 6. Enhance e-fuels synthesis processes operational flexibility to better couple with renewables generation
- Global warming and climate change are real. The true cost of GHG is steadily rising via "new normal" extreme weather events. GHGs need to be priced based on their irreversible damage potential and threat to humanity well being

Thank You For Your Attention!

Contact: Cornelius Matthes CEO +49 152 3467 4386 cornelius@dii-desertenergy.org www.dii-desertenergy.org

